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Abstract
We extend our study of a simple model of biological coevolution to its
statistical properties. Starting with a complete description in terms of a master
equation, we provide its relation to the deterministic evolution equations used
in previous investigations. The stationary states of the mutationless model are
generally well approximated by Gaussian distributions, so that the fluctuations
and correlations of the populations can be computed analytically. Several
specific cases are studied by Monte Carlo simulations, and there is an excellent
agreement between the data and the theoretical predictions.

PACS numbers: 05.40.−a, 87.23.Kg, 05.65.+b

1. Introduction

The dynamics of populations and species in the context of biological or ecological systems have
attracted considerable attention in the community of statistical physicists in the last decade.
Though there has been much progress [1, 2], it is rare that the behaviour of macroscopic
populations can be predicted, even for ‘simple models’, from a set of stochastic rules for
an individual’s propensity to survive and/or to reproduce. The difficulties can be traced not
only to the presence of many degrees of freedom, with complex internal interactions (e.g.,
mutualistic or predator-prey), but also to the non-trivial couplings to external reservoirs (such
as energy or food). As a result, even if we only focus on systems in stationary states, we
must recognize that these are non-equilibrium steady states, so that the well-known methods
of equilibrium thermodynamics should not be blindly applied. At present, given the absence
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of a universally applicable framework of non-equilibrium statistical mechanics, progress is
made through understanding ‘one system at a time’. Within this context, we recently studied a
model of coevolution [3, 4], based on the one (‘tangled nature’) introduced by Hall, Christensen
and collaborators [5–7]. The motivations behind these studies are varied. An early model
for coevolution and speciation, introduced by Bak and Sneppen [8], consists of competing
species, according to a preassigned notion of ‘fitness’. Speciation arises by imposing a crude
version of ‘mutation’, i.e., letting the least fit species (as well as some of their ‘neighbours’) be
replaced by new species with different, randomly chosen fitness. Despite their simplicity, such
models appear to settle into a steady state which exhibits avalanches of extinctions. Though
they are hailed as showing a link between Darwin’s principle of ‘survival of the fittest’ and
Gould’s notion of ‘punctuated equilibria’ [9–11], these models are thought to be too simplistic
in at least two aspects. Firstly, mutation and selection act on individuals of a population, rather
than on entire species at once. Secondly, whether a species is ‘fit’ is not a static notion, but
rather depends on what other species are present in the ecosystem.

To address both issues, Hall et al [5–7] recently introduced an individual-based model
with a dynamically evolving ‘fitness landscape’. The ‘ecosystem’ consists of individuals, each
of which is said to belong to a ‘species’ identified by a ‘genome’ represented by a string of
bits. Mutations are built in through the random flipping of bits, at a constant slow rate, in
the genomes of newborn individuals. In earlier models of speciation, an individual’s fitness,
i.e., its reproduction probability, is purely a function of the bit string and fixed for all time.
Here, the reproduction probability depends on the relative abundance of all other species, so
that the ‘fitness’ becomes a dynamic concept. The ‘interspecies interactions’ are, by contrast,
comparatively static in nature and, for simplicity, are introduced via fixed quantities associated
with pairs of genotypes. Thus, the model accounts only for whether (an individual of) a species
is beneficial or detrimental for another species, regardless of the presence of any other species.
Again for simplicity, all species reproduce asexually, with identical fecundities. Simulations
reveal several interesting behaviours, including the presence of long-lived states separated by
bursts of high activity—‘punctuated equilibria’. Unfortunately, this model proved too complex
for analytic understanding, and only phenomenological descriptions have been advanced to
date.

In an effort to gain some insight into how its remarkable properties arise, we considered
a variation of this model, with simpler interspecies interactions, which enables us both to
carry out much longer simulations and to perform linear stability analysis [3, 4]. In addition
to observing a self-similar picture of intermittency or ‘punctuated equilibria’ over several
decades of generations, we found that standard measures of diversity display 1/f noise in
their power spectral densities. This property is quite consistent with another finding: the
lifetime distribution of the long-lived states approximately follows an inverse-square power
law [12]4. More detailed investigations of the very long-lived states, which typically consist
of a community of a handful of dominant species along with a ‘cloud of mutants’, reveal the
reason behind their longevity. Essentially none of the closest mutants of the main species in
such a community are ‘dangerous’, in that their interactions with the parent species inhibit their
exponential growth. In other words, the original community is (linearly) stable against invasion
by its most closely related mutants. Only a small fraction of the next-closest mutants (with
genes differing from a dominant species by two bits) are dangerous, leading to the eventual
demise of the ‘quasi-steady’ state. Despite the discovery of these connections, full analytic
understanding is still beyond our grasp. In particular, since the theoretical analyses were based

4 A similar distribution has been reported in [12]. Recast as a distribution of inverse lifetimes (i.e., ‘decay rates’),
p(τ → ∞) ∼ 1/τ 2 becomes p(r → 0) ∼ const, a property which appears not only plausible but also ‘generic’ or
‘universal’.
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entirely on a heuristic, deterministic (‘mean-field’) equation of motion, it is unlikely that they
can account for the most intriguing behaviour stemming from a stochastic dynamics.

In the present paper, we address some of the issues associated with a fully stochastic
description. Starting from a master equation which governs the evolution of all the details
(‘microscopics’) of the model, we first demonstrate that the deterministic equation in [4]
emerges, provided all correlations are ignored. However, it is no easy task to find a quantitative
understanding describing the quasi-steady states (QSSs), in which the system appears to be
stationary but actually has long, finite lifetimes. One complication lies with the inherent
metastability aspect of a QSS. Another is that, due to mutations, the populations in a QSS
consist of two components: a handful of dominant species (with at least several hundred
individuals, in the specific simulations we ran) and a larger number of minor species (with
much less than one hundred individuals). Our approach to the solution is a two-step process.
First, for each QSS, we develop a full understanding of a corresponding ‘truly stationary state’
(TSS), i.e., one with only the dominant species. Each TSS is associated with an N -species
fixed point discussed in [4] and can be accessed by setting the mutation rate, µ, to zero. The
second step is to account for O(µ) effects, by including a limited ‘cloud of mutants’. Needless
to say, a careful definition of such a community will be necessary before any analytic progress
is possible. Thus, we will only take the first step here, deferring the more complex problem to a
later publication. Beyond that, our eventual goal is to predict the more fascinating phenomena,
such as power-law distribution of QSS lifetimes, ‘punctuated equilibria’ (or intermittency) and
1/f noise.

In the next section, for completeness and for the readers’ convenience, we briefly review
the specifications of the model. The following section is devoted to the master equation and
the derivation of the deterministic evolution equation used in [4]. Fluctuations and correlations
in a TSS, as well as comparisons to simulations in specific cases, are the focus of sections 4
and 5. Conclusions and an outlook can be found in section 6. The appendix is devoted to
some of the technical details.

2. Model specification and algorithm

The model we considered [4] is a simplified version of the one introduced in [5–7]. It
consists of a population of individuals, each of which is associated with a string of L bits
(0 or 1), representing a ‘genome’ of L ‘genes’. The bit-strings, or genotypes, are labelled
by integers I, which lie between 1 and Nmax = 2L. For simplicity, we will use the term
‘species’ to distinguish individuals with different bit-strings or genotypes. The population
evolves asexually in discrete time steps (t = 0, 1, . . .), which may be thought of as ‘years’
or ‘generations’. In our model, all individuals of a generation die when those of the next
generation are ‘born’ (as in, e.g., aphids). Thus, for any particular run (or ‘history’), the
system is fully specified by the set of integers nI (t) (I = 1, . . . ,Nmax) representing the
number of individuals of genotype I in generation t. In cases where the explicit index I is not
necessary, we will use the ‘vector’ notation

�n(t) ≡ {n1(t), . . . , nNmax(t)}. (2.1)

To model competition and interspecies interactions, we let an individual die with some
non-vanishing probability before it reproduces, e.g., salmon that die in the oceans. All
survivors then give birth to F offspring, which constitute the next generation. Competition for
resources (e.g., space, energy, food) is often introduced via a Verhulst [13] factor, which also
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plays the role of preventing unlimited growth and enters typically via a ratio Ntot(t)/N0. Here
N0 is a parameter representing the ‘carrying capacity’ of the ‘ecosystem’, and

Ntot(t) ≡
∑

I

nI (t) (2.2)

is the total population at time t. With a ‘healthy’ fecundity (F ), the population is unlikely
to ‘collapse’ (Ntot = 0). Instead, Ntot(t) is rarely far from N0. Interspecies interactions are
modelled by a matrix M, the element MJ

I being the effect of the species J on species I. For
reasons provided in [4], we set MI

I = 0 and choose random off-diagonal elements from a
uniform distribution over [−1, 1]. In all our simulations, M is fixed at t = 0 and does not
evolve in time. If both MJ

I and MI
J are positive, the two species are said to be ‘mutualistic’,

and if they are of opposite signs, we have a predator–prey relationship. Not surprisingly,
populations with both elements being negative are extremely unstable. Finally, the probability
of an individual of species I to survive to reproduction is specified by [4]

P(I ; �n(t)) = 1

1 + exp
[−MJ

I nJ (t)
/
Ntot(t) + Ntot(t)/N0

] (2.3)

which is often shortened to just P(I). Here, as in the rest of the paper, we use the Einstein
summation convention, i.e., a repeated index (e.g., J in MJ

I nJ ) is summed over (from 1
to Nmax, in general). As will be clear below, where we deal with systems with large N0

(‘macroscopic’, though not necessarily in the sense of typical thermodynamic systems),
quantities with a single subscripted index (e.g., nJ ) are generally of order N0; those with
a single superscript, of order 1/N0; those with both (e.g., MJ

I ) or none (e.g., P(I)), of O(1);
etc. Exceptions are noted with a caret (or ‘hat’). For example, we denote the ‘normalized’
covariance matrix for the populations (i.e., (〈nInJ 〉−〈nI 〉〈nJ 〉)/N0) by ĜIJ , which is a quantity
of O(1) rather than O

(
N2

0

)
. Similarly, its inverse (�̂IJ ) is also of O(1), as opposed to of

O
(
1
/
N2

0

)
. To avoid confusion, we will remind the readers of such exceptions at the appropriate

points.
The last ingredient in our model is mutation. In the absence of mutations, the diversity

of the population never increases with time. Indeed, the only rigorously stationary state is
the collapsed one, nI = 0 for all I. Nevertheless, non-trivial states (with extremely long
lifetimes and called TSSs here) are typically reached, for all relevant time scales. While
the rigorously stationary state is independent of the initial condition �n(0), the TSS states are
entirely dependent on the initial population, and they display the dominant characteristics
of the corresponding QSSs. Identified by a fixed point (FP) of the deterministic evolution
equation,

nI (t + 1) = nI (t)FP (I ; �n(t)}) (2.4)

a TSS provides the basis for linear stability analysis and for future investigations of the
associated QSS.

Returning to mutations, they are important not only to promote diversity and to model
‘speciation’, but also to provide the main ingredient for the interesting phenomenon of, say,
intermittency (‘punctuated equilibria’) [4]. As in all bit-string models involving asexual
reproduction, we allow each offspring to carry the genes of its parent, except for a probability
of µ/L that each bit be changed. As a result, on the average and for small µ, a survivor
produces µF offspring with different genetic material. To keep track of the ‘biodiversity’,
we define the species richness N (t) as the number of populated species at t (i.e., only N I ’s
are present at t). Another common measure which characterizes the relative abundance of the
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species better (but will not be the focus here) is the Shannon–Wiener index,
∑

J ρ(J ) ln ρ(J ),
where

ρ(J ) ≡ nJ (t)/Ntot(t) (2.5)

is just the fraction of species J in the system.
Let us briefly summarize the algorithm used to simulate this model, referring to [4] for

the details. There are three layers of nested loops: (1) over generations t, (2) over N (t) and
(3) over nI (t). In the innermost (last) loop, each individual produces, with probability P(I),

F offspring, each of which is allowed to mutate before �n(t + 1) is recorded. In most of our
studies, we chose L = 13, N0 = 2000, F = 4, µ = 10−3 and Ntot(0) = 100, with random
initial �n(0). Thus, Nmax = 8192, though far fewer species are typically present in the system
at any given time, i.e., N � Nmax.

3. Master equation and mean-field theory

In our recent investigations, the Monte Carlo studies generate stochastic sequences of
configurations (i.e., non-negative integers, or just ‘points’, in the Nmax-dimensional space)
but the theoretical analysis was based on deterministic, heuristic equations of motion for the
averages of the populations (‘mean-field’ theory). To understand the full stochastic process,
we need a complete description, involving the probability that the system is found with a
specific number of individuals at time t, namely, P(�n, t). Its evolution is governed by the
master equation, given in an appendix of [4]. Before turning to this equation, let us emphasize
the difference between P(�n, t) here and the �n(t) above. In the former, �n is a coordinate (in
Nmax-space) and P is an evolving function in this space. By contrast, �n(t) is just the trajectory
of a single point in this space. A single Monte Carlo run generates a particular trajectory
(or ‘history’): nI (t), and can be represented as a (Kronecker) delta function jumping from
point to point: Pa MC run(�n, t) = ∏

I δ(nI , nI (t)). The full dynamics of P(�n, t) is simulated
by averaging over many runs, and thus difficult to access. When we turn our attention to the
TSSs below, the process simplifies, since they are characterized by static distributions: P∗(�n).
Then, it is sufficient to perform a single, long run during which the system rarely wanders
far (say, O(

√
N0)) from the neighbourhood of a specific point (typically, fixed points of the

mean-field evolution equations).
Returning to the issue at hand, finding an equation for P(�n, t), we recapitulate the

probability for an individual of species I to survive:

P(I) =
{

1 + exp

[
Ntot

N0
− MJ

I

nJ

Ntot

]}−1

. (3.1)

Again, note the different interpretation we give for this expression versus equation (2.3). Here
P(I) = P(I ; �n) denote Nmax functions defined in Nmax-space, independent of t. In contrast,
for a particular MC run at a particular time t, we need only N (t) functions (for a specific point
{nJ (t)}, in a much smaller N -space). Next, we must keep track of all of the possible number
of survivors. Since all of these individuals reproduce, we will call them ‘parents’. Defining
the symbol

[
nI

mI

]
as the rate for mI individuals to survive from the original nI , we simply write

a binomial distribution[
nI

mI

]
= nI !

mI !(nI − mI)!
[P(I)]mI [1 − P(I)]nI −mI . (3.2)

Next, each parent gives rise to F offspring, not every one of which is of the same species. In
the simulations, it is possible to have a mutant whose genome differs from the parent by two
or more bits. However, this is quite rare, being less than O(µ2Ntot) = O(µ2N0) ∼ 10−3.
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Thus, we will keep our analysis simple by restricting our analysis here to mutations which flip
only a single bit. Then, there can be only L + 1 possible varieties of offspring for each parent.
To account for these, let us introduce the notation

bJ,0 for the number of offspring from parent J with no mutations
bJ,α for the number of offspring from parent J with the αth bit flipped

and define the multinomial-like symbol[
FmJ

bJ,0, bJ,1, . . . , bJ,L

]
= (FmJ )!

(bJ,0)!
(1 − µ)bJ,0

L∏
α=1

1

(bJ,α)!

(µ

L

)bJ,α

. (3.3)

This is the probability that the FmJ offspring are distributed into the specific set
{bJ,0, bJ,1, . . . , bJ,L}. The last ingredient needed is the connection matrix

�
J,α
K =

{
1 if genotype K is J with the αth bit flipped
0 otherwise

(3.4)

so that the number of offspring born into species K due to mutations is

BK ≡
∑

J,α>0

�
J,α
K bJ,α. (3.5)

With these ingredients, we arrive at the master equation5:

P(�n′, t + 1) =
∑

�n, �m,{b}

∏
K

δ(n′
K, bK,0 + BK)

∏
J

[
FmJ

bJ,0, bJ,1, . . . , bJ,L

]∏
I

[
nI

mI

]
P(�n, t) (3.6)

where δ(n′, n) is the Kronecker delta. Given a particular initial configuration �n0, P(�n, t) can
be found, in principle, by recursion with P(�n, 0) = δ(�n, �n0). In that sense, we note that the
more precise notation is P(�n, t |�n0, 0), explicitly showing that it is the probability for finding
our system in state �n at time t, conditioned on a specific initial condition. However, this
notation seems unnecessarily cumbersome, so we will just use P(�n, t) in its place.

Note that equation (3.6) is just a special example of the general evolution of conditional
probabilities in a Markov process, i.e.

P(�n′, t + 1) =
∑

�n
R(�n′|�n)P(�n, t) (3.7)

where R(�n′ | �n) is the conditional probability for finding the system in �n′ given that it was in
�n, also known as the transition rate. For our case, R is explicitly

R(�n′|�n) =
∑
�m,{b}

∏
K

δ(n′
K, bK + BK)

∏
J

[
FmJ

bJ,0, bJ,1, . . . , bJ,L

] ∏
I

[
nI

mI

]
. (3.8)

Once P(�n, t) is found, the time dependence of the expectation value of any quantity can
be obtained via

〈•〉t ≡
∑

�n
•P(�n, t) (3.9)

in principle. Specifically, our main interest here will be 〈nI 〉t , the average number of individuals
of species I at time t, as well as quantities quadratic in n (e.g., covariances and correlations).
For example, to see how 〈nK〉t evolves in time, we multiply equation (3.7) by n′

K , and sum
over �n′

〈nK〉t+1 = 〈fK(�n)〉t (3.10)

5 Many master equations are written for continuous time, in the form of ∂tP(C, t) = ∑
C′ L(C, C′)P(C′, t). For

discrete-time processes, we find it more convenient to express the evolution in the form used here.
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where

fK(�n) ≡
∑
�n′

n′
KR(�n′|�n). (3.11)

Exploiting the explicit form of R above and∑
m

m
n!

m!(n − m)!
qm(1 − q)n−m = mq (3.12)

it is straightforward to find f . Reminding the readers of the �n dependence in P, we write
explicitly

fK(�n) = F

[
(1 − µ)nKP (K; �n) + (µ/L)

∑
J

L∑
α=1

�
J,α
K nJ P (J ; �n)

]
. (3.13)

The interpretation of various terms in this expression is clear: F offspring are born to nJ P (J )

survivors of species J , with rearrangements into the new generations due to mutations.
Inserting it into equation (3.10), we arrive at an exact equation

〈nK〉t+1 = F

[
(1 − µ)〈nKP (K)〉t + (µ/L)

∑
J

L∑
α=1

�
J,α
K 〈nJ P (J )〉t

]
. (3.14)

Its simplicity is deceptive, since the P’s are, from equation (3.1), non-trivial functions of �n.
If a formal expansion in powers of �n were inserted for these functions, then averages of all
powers, 〈nJ nK · · ·〉t , would appear on the right-hand side. Of course, equations for these new
averages can be written formally, but the result would be more complex than the BBGKY
hierarchy [14]. Needless to say, good approximation schemes are crucial for further progress.

One such scheme, also known as the ‘mean-field’ approximation, is to ignore all
correlations in order to produce a closed equation for 〈nK〉. Thus, we replace all averages of
the products by products of the averages:

〈nJ nK · · ·〉 → 〈nJ 〉〈nK〉 · · · (3.15)

so that, e.g.,

〈nKP (K; �n)〉 → 〈nK〉P(K; 〈�n〉). (3.16)

In terms of the less cumbersome notation nK(t) ≡ 〈nK〉t , equation (3.10) reduces to

nK(t + 1) = fK({nJ (t)}). (3.17)

Apart from the change of notation (PK({nJ (t)}) → P(K; �n(t))), this equation is precisely the
starting point of our earlier analysis, equation (2) in [4]:

nK(t + 1) = nK(t)FPK({nJ (t)})[1 − µ] + (µ/L)F
∑
I (K)

nI (K)(t)PI (K)({nJ (t)}) (3.18)

where I (K) runs over all values of I that differ from K by one bit.
In the low-mutation-rate (µ � 1) regime, much of the behaviour of a QSS is well

approximated by a TSS (µ = 0), which can be understood in terms of the fixed points of the
mutationless version of this mean-field theory. Here, let us briefly summarize the predictions
of this theory. With µ = 0, the number of populated species in the system, N , never increases.
Therefore, we can restrict our attention to a small subspace (N -dimensional, with N < 5 in
typical simulation runs) of the full 2L-dimensional space. In our previous work [4], we use
tildes (e.g., M̃) to emphasize this aspect. To keep the notation simple, we will drop the tildes
here and keep in mind that, for example, M is an N ×N matrix. Also, with N being an O(1)

quantity (i.e., small compared to N0), the population of every species is generically O(N0).
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Next, fI simplifies to

fI (�n) →
µ=0

FnIP (I ; �n). (3.19)

Since the fixed point, �n∗, obeys

�n∗ = �f (�n∗) (3.20)

we have FP(I ; �n∗) = 1 for all I. Defining the inverse of M by

W ≡ M−1 (3.21)

(with elements WJ
I ) and the sum

σ ≡
∑
IJ

WJ
I (3.22)

we found that the fractions of each species are given by

ρ∗(I ) ≡ n∗
I /N

∗
tot =

∑
J

WJ
I

/
σ (3.23)

and the total N∗
tot by

N∗
tot/N0 = ln(F − 1) + 1/σ. (3.24)

Finally, the elements of S, the stability matrix, are

SJ
I ≡ fI

J (�n∗) ≡ ∂fI /∂nJ |�n∗ = δJ
I + 	J

I (3.25)

where δJ
I is the unit matrix. Here

	J
I =

(
1 − 1

F

) (
MJ

I − ln(F − 1) − 2/σ
)
ρ∗(I ) (3.26)

(denoted by 	̃IJ in [4] and referred to as the community matrix in biological literature) plays
the role of a ‘restoring’ force, driving the population back towards the (stable) fixed point.

4. Fluctuations and correlations of populations

It is clear that all stochastic aspects of the system are lost in the mean-field approximation.
In this section, we study the simplest aspect, namely, an approximate description of the
long-lived, quasi-steady states (QSSs). Now, as we have seen in simulations [4], these states
are dominated by a few mutually supportive species, along with a few individuals of closely
related ‘benign mutants’. Thus, we restrict ourselves in this paper to systems without
mutation, so that several simplifications apply. First, there is the obvious reduction of R from
equation (3.8) to

R(�n′|�n)→
µ=0

∑
�m

∏
K

δ(n′
K, FmK)

∏
I

[
nI

mI

]
. (4.1)

Next, since there can be no new species, we can focus on populations with N ∼ O(1) species,
each of which having O(N0) individuals. Finally, though it is possible for a fluctuation to
collapse the entire population (which is, rigorously, the unique stationary state associated with
equations (3.7), (4.1)), such events are so extreme that the lifetimes of a typical non-trivial
state should be O(eN0). So, for all practical purposes, we may regard such states as ‘truly’
stationary (the TSSs)6.

6 It is possible to force such states to be rigorously stationary, by slight modifications of the rates. The simplest is to
let the survival probabilities P(I) be unity when nI = 1.
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A complete description of a TSS is provided by a stationary distribution P∗(�n), which
satisfies

P∗(�n′) =
∑

�n
R(�n′|�n)P∗(�n). (4.2)

Given P∗(�n), we can find stationary averages of any quantity:

〈•〉∗ ≡
∑

�n
(•)P∗(�n). (4.3)

Here, our main interest will be mean populations and their correlations:

〈nI 〉∗ and 〈nInJ 〉∗ − 〈nI 〉∗〈nJ 〉∗. (4.4)

Even in the absence of mutations and with simplified R’s, there are substantial
nonlinearities (through P(�n)) in the problem that prevent us from finding solutions to
equation (4.2) in general. On the other hand, observations in simulations (and lessons learned
from the central limit theorem) show that our distributions are well approximated by Gaussians.
Indeed, a systematic expansion for P∗ can be formulated, starting from the Gaussian form:

PG(�n) = (2πN0)
−N /2(det Γ̂)1/2 exp

[
− 1

2N0
(nI − n̄I )�̂

IJ (nJ − n̄J )

]
(4.5)

where n̄I and �̂IJ are parameters to be determined. Of course, the first of these is of O(N0).
As for the latter, we expect the fluctuations in our problem to be O(

√
N0), i.e., covariances of

O(N0). To incorporate this expectation, we have chosen to write PG in a form such that the
matrix Γ̂ has elements of O(1):

�̂IJ ∼ O(1) (4.6)

despite the presence of two superscripts.
Within the context of such a scheme, it is possible to compute these quantities from the

microscopic rates. Before proceeding to this computation, we remark that this approximation
for P∗ will lead to the predictions

〈nI 〉∗ = n̄I and 〈nInJ 〉∗ − 〈nI 〉∗〈nJ 〉∗ = N0ĜIJ (4.7)

where Ĝ is the inverse of Γ̂, i.e.

ĜIJ �̂JK = δK
I . (4.8)

Of course, we expect

ĜIJ ∼ O(1) (4.9)

despite its two subscripts.
Though such approaches are well known [15], we provide a few details in the appendix,

both for the sake of completeness and for the convenience of readers unfamiliar with these
methods. Here, we present only the highlights of the analysis and show how they apply to our
case. As shown below, the agreement between our predictions and simulation data in three
specific cases is excellent and validates this entire approach.

Turning to the computation of n̄I and Γ̂ (or Ĝ), we may expect the former to be simply
related to the n∗

I of mean-field theory (equation (3.20)). As shown in the appendix, we have

n̄I = n∗
I [1 + O(1/N0)] (4.10)

(provided none of the eigenvalues of S are close to unity). Indeed, the first correction can
be computed explicitly. Since these corrections are not necessary for finding the fluctuations
and correlations, we will not quote the results here, but refer the reader to equation (A.22)
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in the appendix. To find Ĝ, we need not only fI (�n) and the stability matrix S (given by
equations (3.19), (3.25), (3.26)), but also

HIJ (�n) ≡
∑
�n′

n′
I n

′
J R(�n′|�n). (4.11)

In the limit µ → 0, R reduces to equation (4.1), so that

HIJ (�n) →
∑

�m
(FmI )(FmJ )

∏
I

[
nI

mI

]
(4.12)

= F 2[nInJ P (I)P (J ) + δJ
I nIP (I )(1 − P(I))

]
(4.13)

which is indeed of the form in equation (A.26): HIJ = fIfJ + N0ĤIJ . Thus, we readily
identify ĤIJ of equation (A.30):

ĤIJ = δJ
I F 2n∗

IP (I ; �n∗)[1 − P(I ; �n∗)]/N0. (4.14)

But, FP(I ; �n∗) = 1 for all I, so that

ĤIJ = δJ
I (F − 1)n∗

I /N0. (4.15)

Referring to the appendix again for the details, Ĝ can be obtained from S and Ĥ via the linear
relationship

Ĝ − SĜST = Ĥ. (4.16)

Inserting the explicit form for Ĥ into equations (A.39), (A.40), we arrive at a complete solution
for the covariance matrix in terms of λa, u

K
a and va

I (respectively, the eigenvalues and the left
and right eigenvectors of SI

K , normalized by uI
av

b
I = δb

a ):

ĜIJ = (F − 1)
∑
a,b,K

va
I v

b
J uK

a uK
b

n∗
K/N0

1 − λaλb

+ O(1/N0). (4.17)

Before comparing these predictions to simulations, we provide an intuitive picture for these
fluctuations and correlations. Since we are concerned with distributions well approximated
by Gaussians, the underlying process is just an Ornstein–Uhlenbeck one [15]. Such a process
can be described by a Langevin equation:

�ε(t + 1) − �ε(t) = Λ�ε(t) + �η(t) (4.18)

where Λ plays the role of restoring forces which drive �ε towards zero, and �η is a Gaussian
noise with

〈�η(t)〉 = 0 〈�η(t)�ηT (t ′)〉 = Ĥδ(t, t ′). (4.19)

The notation for the two matrices (Λ, Ĥ) is chosen deliberately. For this problem, they are
precisely those given above: equations (3.26), (4.14), while �ε(t) is just the deviation from the
average:

�ε(t) = �n(t) − n̄. (4.20)

The deterministic part of equation (4.18) is intuitively clear, being the same as in the mean-field
evolution equation, linearized about the fixed point. Now, �η can be seen as the (microscopic)
noise in the stochastic process. In our case, this is clearly due to the uncertainties associated
with survival. Since we have a simple two-state (dying or surviving) random process, we can
hardly be surprised by the presence of the factors nP (1 − P). Also, since this randomness
is imposed on each individual, the diagonal form of Ĥ can be anticipated. Perhaps only the
factor F 2 cannot be easily surmised.
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Figure 1. Theoretical Gaussian (thick, grey curves in the background) and simulated (thin,
black curves in the foreground) TSS probability densities for N = 2, F = 4, and N0 = 2000,
corresponding to the second column in table 1. The Monte Carlo simulation was performed over
524 290 generations with zero probability of mutations. (a) Contour plot of the joint distribution
for n1 and n2, equation (4.5). The negative slope of the long axis indicates that n1 and n2 are
negatively correlated. (b) Marginal distributions for n1 (right) and n2 (left), equation (4.22).

We have carried out simulations for ten cases, with N = 2, 3 and 4. For simplicity, in
each case we chose a set of species which served as the dominant ones in one of the ten QSS
communities included in table I of [4]. Of course, since µ was set to zero in the simulations
reported here, the communities are TSSs. The runs were carried out for 524 290 generations
each. From the recorded nI (t), we computed the averages 〈nI 〉MC and the covariance matrix
ĜMC. For the N = 2 case, we can easily display a histogram of all the populations
(figure 1(a)). In addition, in figure 1(b), we show how good the Gaussian approximation
is by plotting the projections of both this histogram (onto one or the other axis) and the
theoretical predictions, e.g.,

Pproj(n1) =
∫

dn2PG(n1, n2) (4.21)

=
(

det Γ̂

2πN0�̂22

)1/2

exp

[
− det Γ̂

2N0�̂22
(n1 − n̄1)

2

]
. (4.22)

We emphasize that the theoretical curves are produced with no fitting parameters—all
quantities were computed from the model specifications (i.e., N0, F and M). For the N > 2
cases, it is difficult to display full histograms. Instead, we only provide the comparison for
the averages and covariance matrices for three particular TSSs in tables 1 and 2. As we see,
the agreement is excellent, well within the expected accuracy of the approximation, O(1/N0),
and the statistical errors, O(1/

√
524, 290).

5. Distributions containing dynamical information

In the previous section, we focused on the static distribution of the populations in a TSS. In
other words, we can compute (within the Gaussian approximation) correlation functions that
involve any number of species, all ‘at the same time’. Here, we investigate the information
contained in the dynamics of the stochastic process, i.e., time-dependent correlations. For an
evolving population, a natural question is how the system changes from one generation to the
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Table 1. Theoretical results for two TSS communities with N = 2 and 3, respectively, compared
with corresponding quantities from Monte Carlo simulations with N0 = 2000 over 524 290
generations. The communities are defined by the interaction matrices M. The quantities shown
are the normalized fixed-point population vector, �n∗/N0 (equations (3.23) and (3.24)) and the
corresponding Monte Carlo average 〈�n〉MC/N0, the normalized population covariance matrix Ĝ
(defined by equation (4.7)) and calculated from equation (A.36) with 20 iterations for N = 2 and
30 iterations for N = 3) and ĜMC, the step-covariance matrix ĝ (equation (5.17)) and ĝMC, and the
normalized correlation matrix between steps �s(t) and the deviation from the average population
�ε(t) = �n(t) − �n∗, Ĉ (equation (5.22)) and ĈMC. All numbers are given to four significant digits.
Results for N = 4 are shown in table 2.

N 2 3

M
(

0 0.9448
0.8563 0

) 
 0 0.7497 0.9450

0.8935 0 0.6212
0.6474 0.9881 0




�n∗/N0

(
0.8119
0.7359

) 
0.6062

0.4897
0.5388




〈�n〉MC/N0

(
0.8112
0.7350

) 
0.6055

0.4892
0.5378




Ĝ
(

3.294 −0.8722
−0.8722 3.224

) 
 3.667 −0.9323 −0.9558

−0.9323 3.551 −0.9249
−0.9558 −0.9249 3.590




ĜMC

(
3.295 −0.8784

−0.8784 3.227

) 
 3.690 −0.9440 −0.9584

−0.9440 3.573 −0.9289
−0.9584 −0.9289 3.592




ĝ
(

4.455 1.368
1.368 3.882

) 
 3.039 0.7902 0.8768

0.7902 2.285 0.7152
0.8768 0.7152 2.592




ĝMC

(
4.442 1.352
1.352 3.865

) 
 3.050 0.7865 0.8716

0.7865 2.287 0.7098
0.8716 0.7098 2.586




Ĉ
( −2.227 −0.6494

−0.7189 −1.941

) 
 −1.520 −0.5253 −0.2812

−0.2649 −1.143 −0.5244
−0.5956 −0.1908 −1.296




ĈMC

( −2.221 −0.6385
−0.7139 −1.933

) 
 −1.524 −0.5221 −0.2814

−0.2643 −1.143 −0.5224
−0.5902 −0.1873 −1.293




next. To probe this issue at a quantitative level, let us consider two examples, the statistics of
‘steps’,

�s(t) ≡ �n(t + 1) − �n(t) (5.1)

and the correlation of these steps with the deviations from the average, �ε(t).
In a stationary state, the mean-field prediction for the step size is clearly zero (�sMF ≡ 0),

as must also be the case for the average 〈�s〉∗. Nevertheless, we expect a typical step size to
be O(

√
N0). For a more detailed picture, we may seek the step-size distribution (SSD) in the

steady state: P∗
s (�s). A precise definition is

P∗
s (�s) ≡ lim

t→∞

∑
�n′,�n

δ(�s, �n′ − �n)P(�n′, t + 1; �n, t) (5.2)
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Table 2. Theoretical results for a TSS community with N = 4, compared with corresponding
quantities from a Monte Carlo simulation with N0 = 10 000 over 524 290 generations. The
quantities shown are the same as in table 1. The eigenvalues of S are relatively close to unity, so
evaluation of G from equation (A.36) required 180 iterations.

N 4

M




0 0.5507 0.5101 0.9847
0.9543 0 0.8437 0.9508
0.4724 0.6190 0 0.7371
0.9734 0.6808 0.1862 0




�n∗/N0




0.3355
0.7034
0.2366
0.3468




〈�n〉MC/N0




0.3356
0.7035
0.2354
0.3472




Ĝ




4.215 −1.043 −2.583 1.132
−1.043 3.882 −0.1463 −1.006
−2.583 −0.1463 6.509 −3.791
1.132 −1.006 −3.791 5.653




ĜMC




4.252 −1.055 −2.620 1.152
−1.055 3.870 −0.1366 −1.003
−2.620 −0.1366 6.612 −3.879
1.151 −1.003 −3.879 5.718




ĝ




1.387 0.6468 0.2384 0.3094
0.6468 3.704 0.4482 0.6518
0.2384 0.4482 0.8927 0.2414
0.3094 0.6518 0.2414 1.461




ĝMC




1.388 0.6417 0.2368 0.3090
0.6417 3.694 0.4440 0.6501
0.2368 0.4440 0.8870 0.2381
0.3090 0.6501 0.2381 1.462




Ĉ




−0.6934 −0.3951 −0.07285 −0.1841
−0.2517 −1.852 −0.1801 −0.3281
−0.1655 −0.2681 −0.4464 −0.020 48
−0.1253 −0.3237 −0.2209 −0.7304




ĈMC




−0.6942 −0.3907 −0.072 52 −0.1851
−0.2510 −1.847 −0.1779 −0.3259
−0.1642 −0.2661 −0.4435 −0.017 83
−0.1239 −0.3242 −0.2202 −0.7310




where P(�n′, t + 1; �n, t) is the joint probability for finding the system with population �n at
time t and with �n′ in the next step. From the master equation (3.7), it is clear that this is just
R(�n′|�n)P(�n, t), so that

lim
t→∞P(�n′, t + 1; �n, t) = R(�n′|�n)P∗(�n). (5.3)

Thus, once the steady-state distribution P∗(�n) is known, the SSD can be obtained from

P∗
s (�s) =

∑
�n

R(�n + �s|�n)P∗(�n). (5.4)

Applying this formalism to our case of coevolving species without mutations, we can
exploit all the approximations detailed in the previous section, namely, a Gaussian for the
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stationary state (P∗(�n) ∼= PG(�n) of equation (4.5)), continuous variables for �n, and integrals
instead of sums. Given equation (4.2), the success of that scheme is implicitly dependent on
the fact that R(�n′|�n) is also well approximated by a Gaussian7. As a result, we need not carry
out another lengthy analysis to conclude that P∗

s (�s) should also be of the form

P∗
s (�s) ∼= (2πN0)

−N /2(det γ̂)1/2 exp

[
− 1

2N0
sI γ̂

IJ sJ

]
. (5.5)

However, it is clear that the matrix γ̂ is distinct from Γ̂, since the former must contain some
‘dynamic’ information. (Note that the caret is to remind us that, despite the presence of two
superscripts, γ̂ IJ is of O(1).) Now, within the context of simple Gaussians, γ̂ can be found
by computing its inverse

ĝ ≡ γ̂ −1 (5.6)

which is just the second moment

〈sI sJ 〉s ≡
∑

�s
sI sJP∗

s (�s). (5.7)

Let us first derive an exact formula for this quantity in terms of 〈•〉∗. Starting with

〈sI sJ 〉s =
∑
�s,�n

sI sJ R(�n + �s|�n)P∗(�n) (5.8)

=
∑
�n′,�n

(n′
I − nI )(n

′
J − nJ )R(�n′|�n)P∗(�n) (5.9)

we use equations (4.2) and (3.11) and arrive at the exact relation:

〈sI sJ 〉s = 2〈nInJ 〉∗ − 〈fInJ 〉∗ − 〈nIfJ 〉∗. (5.10)

Next, we exploit P∗(�n) ∼= PG(�n) for computing 〈•〉∗ and apply equation (A.17). Thus,

〈nInJ 〉∗ ∼= n̄I n̄J + N0ĜIJ (5.11)

and

〈fInJ 〉∗ ∼= fI (n̄)n̄J + N0f
K
I (n̄)ĜKJ +

N0

2
f KM

I (n̄)n̄J ĜKM (5.12)

where f KM
I ≡ ∂2fI /∂nK∂nM . Thanks to equation (A.18), the first and the last terms in

equation (5.12) combine, so that

〈fInJ 〉∗ ∼= n̄I n̄J + N0f
K
I (n̄)ĜKJ . (5.13)

To the order kept here, f K
I (n̄) is just f K

I (�n∗) = SK
I . So, collecting various items and using

equation (3.25), we arrive at

〈sI sJ 〉s ∼= N0
(
2ĜIJ − SK

I ĜKJ − ĜIKSK
J

)
(5.14)

= −N0
(
	K

I ĜKJ + ĜIK	K
J

)
. (5.15)

Finally, we relate this result to the Gaussian approximation equation (5.5) intended for the
SSD, which provides

〈sI sJ 〉s ∼= N0ĝIJ (5.16)

7 In the same manner as for the stationary distributions, this property can be derived from the definition of R
using straightforward, but tedious, manipulations with the binomials. Here, we can treat this as an assumption, the
justification of which will be the agreement with simulation data.
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Figure 2. Contour plot of the theoretical Gaussian and simulated joint probability densities for
the steps s1 and s2, equation (5.5). The line types and parameters are the same as in figure 1, and
the simulated histogram was obtained from the same simulation run as in that figure. The positive
slope of the long axis indicates that the steps are positively correlated.

and obtain a simple equation for ĝ:

ĝ = −(ΛĜ + ĜΛT ). (5.17)

As in the previous section, these predictions are well borne out in simulations. For the same
N = 2 case as above, we display a two-dimensional histogram of the step sizes in figure 2.
Note that this distribution is indeed quite different from that for the populations (figure 1).
For the N > 2 cases, full histograms are difficult to display and we only show the correlation
matrices ĝ and their Monte Carlo counterparts ĝMC in tables 1 and 2.

Although the SSD probes the underlying dynamics, it does not contain all information
of the stochastic (Ornstein–Uhlenbeck) process. In particular, equation (5.17) shows that
the antisymmetric part of ΛĜ is ‘missing’. To remedy this shortcoming, we turn to another
question which naturally comes to mind: how are the steps (�s) correlated with the deviations
from the average (�ε ≡ �n − n̄)? Note that, since two quantities are involved (�s and �ε), a
full distribution associated with this question is slightly more involved than P∗(�n) or P∗

s (�s).
Nevertheless, within the approximation scheme we use, it would be a (generalized) Gaussian
in the steady state. For simplicity, let us focus on, instead of the full distribution, only the
normalized correlation of �s with �ε:

ĈIJ ≡ 〈sI εJ 〉/N0. (5.18)

By using this notation, we are displaying again our expectation that 〈sI εJ 〉 is also of
O(N0). Starting at the same point as equation (5.8), we write

〈sI εJ 〉 =
∑
�s,�n

sI εJ R(�n + �s|�n)P∗(�n) (5.19)

=
∑
�n′,�n

(n′
I − nI )(nJ − n̄J )R(�n′|�n)P∗(�n). (5.20)

Since 〈�n′〉∗ = 〈�n〉∗, this reduces to

〈sI εJ 〉 = 〈fInJ 〉∗ − 〈nInJ 〉∗ (5.21)
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which is again an exact relationship. Repeating the analysis in the previous paragraph, we
find, in the Gaussian approximation, a simple result: 〈sI εJ 〉 = N0	

K
I ĜKJ , or

Ĉ = ΛĜ. (5.22)

Unlike the step-size covariance, this matrix is not symmetric in general and contains the
full information of the dynamics (to this order of our approximation). Note also that, since
Λ is negative and Ĝ is positive, this correlation is typically negative. This simply reflects
a restoring dynamics: steps and deviations from the mean tend to be opposite. In tables 1
and 2, we see that there is excellent agreement between the predicted Ĉ’s and their counterparts
from simulations.

Another commonly studied correlation is the connected two-time function, (〈nI (t +
τ)nJ (t)〉 − 〈nI 〉〈nJ 〉)/N0, which, in the stationary state, is just

�̂IJ (τ ) = 〈εI (t + τ)εJ (t)〉/N0. (5.23)

Within the Gaussian approximation, equation (4.18) can be used repeatedly to express ε(t + τ)

in terms of ε(t) and the noise ηI (t + t ′) at each time step. Since 〈ηI (t + t ′)ε(t)〉 =
〈ηI (t + t ′)〉〈ε(t)〉 = 0 for all t ′, we find

Ξ̂(τ ) = Sτ Ĝ. (5.24)

6. Concluding remarks

Since we have presented a considerable amount of mathematical details above, it is worthwhile
to provide a short summary. In the model presented in [4], the entire evolution depends
only on the parameters µ,F,N0 and MJ

I . Strictly speaking, the only stationary state
corresponds to total extinction (�n = 0). But, if mutation is suppressed (µ = 0), then,
not only does the configuration space break up into many sectors, but there will also be
non-trivial long-lived (O(eN0) generations) states. Referred to as ‘truly stationary states’,
these communities consist of a fixed number (N � 1) of species. Typically, the population
of each species is O(N0). Provided we are not near a ‘critical point’, the full distribution
of these populations can be studied by a systematic approximation scheme, starting with a
multivariate Gaussian, parametrized by its mean and covariance matrix. For each TSS, our
theory predicts these parameters and thus, the full distribution. Specifically, from the set of
parameters µ,F,N0 and MJ

I , we can compute �n∗, Ĥ and S = 1 − Λ (equations (3.23)–
(3.26) and (4.15)). Then, at the lowest order in our approximation scheme, the mean
n̄ and the covariance matrix Ĝ are given explicitly (equations (4.10), (A.19)–(A.23), and
(4.16)–(4.17)). In addition to this ‘static’ aspect of the steady state, we also presented
two ways of characterizing the ‘dynamic’ aspect. One is the full distribution of sizes of
steps (changes in the populations in a single time step, denoted by �s). Well approximated
by a Gaussian also, this distribution has zero mean and covariance ĝ , which is given
explicitly by equation (5.17). The other is the correlation of the steps with the populations
just before the step (specified by the deviations from the average, �ε). Denoted by Ĉ, this
correlation is given explicitly by equation (5.22). Finally, we have shown that there is an
excellent agreement between these analytical predictions and Monte Carlo simulations in ten
typical TSS communities (data for three of which are shown in tables 1 and 2 and figures 1
and 2).

With a solid understanding of the steady-state properties of stable communities in the
absence of mutations, our next goal is a study of quasi-steady states of populations with low
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mutation rates. To carry out a serious analysis with µ > 0, we must define the restrictions on
R carefully. Otherwise, it would be impossible to find a satisfactory solution to the equation

P∗(�n′) =
∑

�n
R(�n′|�n)P∗(�n). (6.1)

As in the case for µ = 0, we may seek an approximate solution, in the form of a product of a
Gaussian distribution for the dominant species and exponential distributions for the minority
mutants [16]. Provided this program is successful, the next step would be to study the
probability of this type of QSS having ‘dangerous’ mutants at the higher order of µ, which
hopefully will lead to some understanding of the distribution of QSS lifetimes [12] and the
presence of 1/f noise in power spectral densities. Beyond this step, perhaps sophisticated
renormalization-group techniques can be marshalled to account for the self-similar patterns
displayed, as well as to identify universality classes for such behaviour. Needless to say, even
for such a simple model of coevolution, much remains to be explored.
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Appendix A. Mathematical detail

Starting from the general expression for a discrete-time Markov process,

P(�n′, t + 1) =
∑

�n
R(�n′|�n)P(�n, t) (A.1)

we write the mean-field approximation for the evolution equation as

�nMF(t + 1) = �f (�nMF(t)) (A.2)

where the functional form of �f is given by

�f (�n) =
∑
�n′

�n′R(�n′|�n). (A.3)

Note that the components of �n play the role of coordinates in equation (A.1) and take only
non-negative integer values in models of population dynamics. However, there is no guarantee
that �f will be an integer in equation (A.2), so that we must allow �nMF to be continuous variables
(functions of t). As we will see below, our analysis is much simplified if we also assume �n to
be continuous.

Focusing only on simple fixed points (as opposed to fixed cycles involving two or more
points) of the mean-field theory, we denote a FP by �n∗. (To keep the notation from being too
cumbersome, we suppress the superscript MF and only keep in mind that �n∗ represents just N
real numbers.) The equation for determining �n∗ is

�n∗ = �f (�n∗). (A.4)
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Anticipating the need for the associated stability matrix, we write it as

S ≡�∇ �f |�n∗ (A.5)

where �∇ stands for derivatives with respect to �n. Explicitly, the matrix elements of S are

SJ
I = ∂fI /∂nJ |�n∗ (A.6)

clearly asymmetric in general. As in our earlier study, we restrict ourselves to stable fixed
points, so that the real parts of the eigenvalues of S (denoted by 1 + Λ̂ in [4]) should lie in the
interval (−1, 1). Indeed, we restrict our attention here to isolated FPs far from others, so that
no (real part of any) eigenvalue is close to unity.

Turning to the full stochastic problem, we consider a stationary distribution P∗(�n), which
satisfies

P∗(�n′) =
∑

�n
R(�n′|�n)P∗(�n). (A.7)

Therefore, it is a right eigenvector of the matrix R(�n′|�n) with unit eigenvalue. Its existence
is guaranteed (though not necessarily its uniqueness, in general) by the presence of a left
eigenvector of unit eigenvalue (i.e., u(�n) = 1 ∀�n), thanks to having probability conserving
rates. If P∗ is known, then we can compute the stationary averages of all quantities via
equation (4.3). A different approach is to study the equations satisfied by these averages.
Multiplying equation (A.7) by a quantity and summing, we find, in general, no closed equation.
Instead, a tangle of infinitely many coupled equations appears. Examples are

〈nI 〉∗ = 〈fI (�n)〉∗ and 〈nInJ 〉∗ = 〈HIJ (�n)〉∗ (A.8)

where fI is an element of �f , given by equation (A.3), and

HIJ (�n) ≡
∑
�n′

n′
I n

′
J R(�n′|�n). (A.9)

In both cases, the right-hand sides contain expectation values of all powers of �n, so that
infinitely many equations are needed to close the set.

In practice, for generic situations such as those described in the main text, we may
approximate P∗ by a Gaussian:

P∗(�n) ∼= PG(�n) = (2πN0)
−N /2(det Γ̂)1/2 exp

[
− 1

2N0
(nI − n̄I )�̂

IJ (nJ − n̄J )

]
(A.10)

where the unknowns n̄I and �̂IJ are to be determined. Naturally, we expect that the centre
of the Gaussian lies close to the mean-field FP, �n∗. This scenario is corroborated by our case
studies above and our analysis below. Indeed, this approximation can be used as the starting
point of a systematic expansion, which relies on having a large parameter (N0) controlling
the fluctuations to O(

√
N0). In this context, n̄ and Γ̂ are assumed to be O(N0) and O(1),

respectively. In addition to playing the role of ordering a systematic expansion, a large N0

(and so, large �n∗) provides two further simplifications: (i) �n may be promoted to continuous
variables so that sums can be replaced by integrals, and (ii) integration can be extended to
[−∞,∞] while only incurring errors of O

(
e−√

N0
)
.

Once n̄I and �̂IJ are determined, then we can set up expansions for the averages of any
quantity Q:

〈Q(�n)〉∗ ≡
∑

�n
Q(�n)P∗(�n) (A.11)

starting with ∫
Q(�n)PG(�n) d�n. (A.12)
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Given that nI does not deviate far from n̄I , such integrals can be handled by first expanding Q
around n̄I :

Q(�n) = Q̄ + QI(nI − n̄I ) + 1
2QIJ (nI − n̄I )(nJ − n̄J ) + · · · (A.13)

where the summation convention is used and

Q̄ ≡ Q(�n)|�n=n̄ (A.14)

QI ≡ ∂Q(�n)

∂nI

∣∣∣∣
�n=n̄

(A.15)

QIJ ≡ ∂2Q(�n)

∂nI ∂nJ

∣∣∣∣
�n=n̄

. (A.16)

The integral can now be performed, so that

〈Q(�n)〉∗ ∼=
∫

Q(�n)PG(�n) d�n = Q̄ +
N0

2
QIJ ĜIJ + · · · (A.17)

where Ĝ = Γ̂
−1

. There is no need to be alarmed at the factor N0 in the second term. Since
QIJ involves two derivatives with respect to �n, it is typically of the order of 1

/
N2

0 compared
to Q̄. Thus, the second term in this expansion is O(1/N0) compared to the first.

With this machinery, we seek equations to fix n̄I and Ĝ. From equation (4.4), we have,
with Q = fI ,

n̄I = 〈fI (�n)〉∗ ∼= fI (n̄) +
N0

2
fI

JKĜJK + · · · . (A.18)

Again, we expect the second term to be O(1/N0) compared to the first, so that we may write
an expansion for n̄I :

n̄I = n̄
(0)
I + n̄

(1)
I + · · · . (A.19)

Inserting this back into equation (A.18) and noting equation (A.4), we find the expected

n̄
(0)
I = n∗

I . (A.20)

Proceeding to the next order, we find

n̄
(1)
I = f J

I

(
n̄

(0)
I

)
n̄

(1)
I +

N0

2
f JK

I ĜJK (A.21)

where all functions of �n in the last term can be evaluated at n̄
(0)
I . To save notation, we will

just write ĜJK in lieu of the more explicit form: Ĝ
(0)
JK . We recognize that f J

I

(
n̄

(0)
I

)
is just the

stability matrix SJ
I and write

n̄
(1)
I = N0

2
V M

I fM
JKĜJK (A.22)

where

V ≡(1 − S)−1 (A.23)

(the inverse of −Λ̃ in [4]). Let us emphasize that V M
I and ĜJK are supposedly O(1), while

fM
JK is O(1/N0) so that the right-hand side of equation (A.22) is a quantity of O(1). This

expression also provides a precise meaning to the phrase ‘no eigenvalue (of S) is close to
unity’, which appeared as a restriction on the FPs we study.

Extending this technique to nInJ , we consider

N0ĜIJ + 〈nI 〉∗〈nJ 〉∗ = 〈nInJ 〉∗ = 〈HIJ (�n)〉∗ (A.24)
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from equations (4.4) and (A.8). Again, using the Gaussian approximation for both sides, we
arrive at

N0ĜIJ + n̄I n̄J
∼= HIJ (n̄) +

N0

2
HIJ

KMĜKM + · · · . (A.25)

At the lowest order, O
(
N2

0

)
, of this equation, internal consistency will ensure that

HIJ (n̄(0)) ∼= n̄
(0)
I n̄

(0)
J and should provide a check for tedious, error-prone computations.

Furthermore, we can consider the difference

HIJ (�n) − fI (�n)fJ (�n) (A.26)

and find that it is often one order lower (as explicitly shown in the main text for our model).
In other words, we have

HIJ (�n∗) − fI (�n∗)fJ (�n∗) ∼ O(N0). (A.27)

To emphasize this property, we explicitly extract a factor N0 and define

ĤIJ (�n) ≡ [HIJ (�n) − fI (�n)fJ (�n)]/N0 (A.28)

so that

HIJ (n̄) = fI (n̄)fJ (n̄) + N0ĤIJ (n̄). (A.29)

Since we keep only terms of orders N2
0 and N0, we can evaluate ĤIJ (n̄) at �n∗ and define, for

simplicity,

ĤIJ ≡ ĤIJ (�n∗). (A.30)

As a reminder, this quantity is of O(1). Next, to lowest order needed (i.e., O(1)), we find

HIJ
KM = SK

I SM
J + SM

I SK
J + fIfJ

KM + fI
KMfJ (A.31)

all evaluated at the FP. Inserting these expressions into equation (A.25), we obtain

N0GIJ + n̄I n̄J
∼= fI (n̄)fJ (n̄) + N0ĤIJ

+
N0

2

[
SK

I SM
J + SM

I SK
J + fIfJ

KM + fI
KMfJ

]
GKM + · · · . (A.32)

Exploiting equation (A.18), we arrive at an equation for Ĝ:

ĜIJ = ĤIJ + 1
2

[
SK

I SM
J + SM

I SK
J

]
ĜKM. (A.33)

But, G is symmetric, so that the final equation, in matrix form, reads

Ĝ − SĜST = Ĥ. (A.34)

Here ST denotes the transpose of S, and, from equation (A.9), Ĥ is necessarily symmetric.
Again, let us emphasize that all quantities in this equation are O(1). Unfortunately, there is
no simple way to express Ĝ in terms of the known matrices: S and Ĥ. A formal series can be
written as

Ĝ = Ĥ + SĤ ST + SSĤ ST ST + · · · (A.35)

equivalent to a recursion relation

Ĝn = Ĥ + SĜn−1ST (A.36)

with Ĝ0 = Ĥ. It was this recursion method that was used to obtain numerical results for
comparison with the Monte Carlo results in the figures and tables. Convergence to four
significant digits was obtained with n = 20 for N = 2, n = 30 for N = 3 and n = 140 for
N = 4.
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An explicit form for Ĝ can be found when we examine this equation in the frame where S is
diagonal. To be explicit, take matrix elements of equation (A.34) with uI

a , the left eigenvectors
of S, which satisfy

uI
aS

K
I = λau

I
a (no sum on a). (A.37)

The result is

Ĝab = Ĥab/(1 − λaλb) (no sum) (A.38)

where

Ĝab = ĜIJ uI
au

J
b and Ĥab = ĤIJ uI

au
J
b . (A.39)

To find the original matrix elements, we apply the dual set va
I (i.e., the right eigenvectors of S,

normalized by va
I u

I
b = δa

b ) and obtain

ĜIJ = va
I v

b
J Ĝab =

∑
a,b

va
I v

b
J Ĥab

/
(1 − λaλb). (A.40)

Finally, this expression again shows the importance of insisting that ‘no eigenvalue (of S) is
close to unity’. In case one or more λ approach unity, the system would be labelled ‘critical’
or ‘multi-critical’, in the language of phase transitions. Away from such points, the Gaussian
approximation, along with its associated Ornstein–Uhlenbeck process, is adequate. For further
details, see, for example, the books by van Kampen [15] and Risken [17].
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